

DIFFERENTIAL QUADRATURE METHOD FOR VIBRATION ANALYSIS OF SHEAR DEFORMABLE ANNULAR SECTOR PLATES

K. M. LIEW AND F.-L. LIU

Centre for Advanced Numerical Engineering Simulations, School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798, Singapore

(Received 10 September 1997, and in final form 23 July 1999)

This paper presents differential quadrature solutions for free vibration analysis of moderately thick annular sector plates based on the Mindlin first-order shear deformation theory. Numerical characteristics of the differential quadrature method are illustrated through solving selected annular sector plates with different boundary conditions, relative thickness ratios, inner-to-outer radius ratios and various sector angles. Parametric studies in terms of the vibration frequency parameters are thoroughly investigated.

© 2000 Academic Press

1. INTRODUCTION

The annular sector plate forms one of the most widely used structural components in engineering applications. The vibration analysis of annular sector plates is, therefore, of paramount importance in practical design. In the past few decades, many researches have been done on the solution of vibration problems of thin annular sector plates by analytical methods [1-5] and numerical methods such as the energy method [6-11], the integral equation method [12], the finite strip method [13] and the spline element method [14, 15], and other methods [16]. In the mean time, the solution of vibration problems of thick annular sector plates has also attracted the attention of many researchers. Kobayashi et al. [17] obtained an analytical solution to the vibration of a Mindlin annular sector plate with two radial edges simply supported and two other circular edges free. Huang et al. obtained analytical solutions to the sectorial plates having simply supported radial edges and arbitrarily bounded circular edges [18]. Tanaka et al. [19] reported solutions to the free vibration of a cantilever annular sector plate with curved radial edges and varying thicknesses. Other researchers obtained numerical solutions for free vibration problems of Reissner or Mindlin annular sector plates by using the finite element method [20, 21], the boundary element method [22], the finite strip method [23, 24] and the Rayleigh-Ritz method [25].

The DQ method was first introduced by Bellman and Casti [26] and Bellman *et al.* [27] and developed further by Quan and Chang [28] and Shu and Richards

[29] into the generalized DQ method through introducing a simple algebraic formula to calculate the weighting coefficients of different derivatives. Many previous studies [30-35] have shown that the DQ method is capable of yielding highly accurate solutions to the initial boundary value problems with much less computational effort. Therefore, it appears that the method has the potential to become an alternative to the conventional numerical methods. However, this powerful method has not been tested to solve the vibration analysis of sector plates.

In this paper, the DQ method is thus applied to the problems of free vibrations of thick Mindlin annular sector plates which are described by three differential equations in a two-dimensional polar co-ordinate system. The accuracy and the convergence characteristics of the DQ method for the free vibration analysis of several thick annular plates of different inner-to-outer radius ratios, relative thickness ratios and boundary conditions are investigated through directly comparing the present results with the existing exact or other numerical solutions. The applicability and the simplicity of the DQ method for the vibration analysis of Mindlin annular sector plates have been demonstrated through solving examples in the parameter studies.

2. METHOD OF DIFFERENTIAL QUADRATURE

The two-dimensional polar co-ordinate system can be treated in a similar way to the two-dimensional Cartesian co-ordinate system in using the differential quadrature rule. Suppose that there are N_R grid points in the *R*-direction and N_{Θ} grid points in the Θ direction with $R_1, R_2, \ldots, R_{N_x}$ and $\Theta_1, \Theta_2, \ldots, \Theta_{N_{\Theta}}$ as the co-ordinates, the *n*th order partial derivative of $f(R, \Theta)$ with respect to *R*, the *m*th order partial derivative of $f(R, \Theta)$ with respect to Θ and the (n + m)th order partial derivative of $f(R, \Theta)$ with respect to both *R* and Θ can be expressed discretely at the point (R_i, Θ_j) as

$$f_{R}^{(n)}(R_{i},\Theta_{j}) = \sum_{k=1}^{N_{R}} C_{ik}^{(n)} f(R_{k},\Theta_{j}), \quad n = 1, 2, \dots, N_{R} - 1,$$
(1a)

$$f_{\Theta}^{(m)}(R_i, \Theta_j) = \sum_{k=1}^{N_{\Theta}} \bar{C}_{jk}^{(m)} f(R_i, \Theta_k), \quad m = 1, 2, \dots, N_{\Theta} - 1,$$
(1b)

$$f_{R\Theta}^{(n+m)}(R_i, \Theta_j) = \sum_{k=1}^{N_R} C_{ik}^{(n)} \sum_{l=1}^{N_{\Theta}} \bar{C}_{jl}^{(m)} f(R_k, \Theta_l)$$

for $i = 1, 2, ..., N_R$ and $j = 1, 2, ..., N_{\Theta}$, (1c)

where $C_{ij}^{(n)}$ and $\overline{C}_{ij}^{(m)}$ are weighting coefficients associated with *n*th order partial derivative of $f(R, \Theta)$ with respect to R at the discrete point R_i and *m*th order derivative with respect to Θ at Θ_j .

According to Quan and Chang [28] and Shu and Richards [29], the weighting coefficients in equations (1a-c) can be determined as follows:

$$C_{ij}^{(1)} = \frac{M^{(1)}(R_i)}{(R_i - R_j)M^{(1)}(R_j)}, \quad i, j = 1, 2, \dots, N_R, \text{ but } j \neq i,$$
(2)

where

$$M^{(1)}(R_i) = \prod_{j=1, \ j \neq i}^{N_R} (R_i - R_j)$$
(3)

and

$$C_{ij}^{(n)} = n \left(C_{ii}^{(n-1)} C_{ij}^{(1)} - \frac{C_{ij}^{(n-1)}}{R_i - R_j} \right)$$
(4)

for $i, j = 1, 2, ..., N_R$, but $j \neq i$; and $n = 2, 3, ..., N_R - 1$,

$$C_{il}^{(n)} = -\sum_{j=1, j \neq i}^{N_R} C_{ij}^{(n)}, \quad i = 1, 2, \dots, N_R, \text{ and } n = 1, 2, \dots, N_R - 1.$$
 (5)

 $\bar{C}_{ij}^{(n)}$ can be determined using equations (1)–(5) simply by replacing all R with Θ .

3. MODELLING OF PROBLEMS BY DQ METHOD

3.1. GOVERNING EQUATIONS

The problem concerned here is the transverse free vibration of a thick isotropic annular sector plate with uniform thickness h, sector angle α , inner radius b and outer radius a as shown in Figure 1. According to Mindlin's plate theory, the equilibrium equations in terms of moment and shear resultants in polar co-ordinates are [36]

$$\frac{\partial M_r}{\partial r} + \frac{1}{r} \frac{\partial M_{r\theta}}{\partial \theta} + \frac{1}{r} (M_r - M_{\theta}) - Q_r = \frac{\rho h^3}{12} \frac{\partial^2 \psi_r}{\partial t^2}, \tag{6a}$$

$$\frac{\partial M_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial M_{\theta}}{\partial \theta} + \frac{2}{r} M_{r\theta} - Q_{\theta} = \frac{\rho h^3}{12} \frac{\partial^2 \psi_{\theta}}{\partial t^2}, \tag{6b}$$

$$\frac{\partial Q_r}{\partial r} + \frac{1}{r} \frac{\partial Q_{\theta}}{\partial \theta} + \frac{1}{r} Q_r = \rho h \frac{\partial^2 w}{\partial t^2}, \tag{6c}$$

where ρ is the density of the plate. The moment resultants M_r , M_{θ} , and $M_{r\theta}$ and the force resultants Q_r and Q_{θ} are expressed by the transverse deflection w and the

Figure 1. Geometry and co-ordinate system of annular sector plate.

bending rotations ψ_r in the radial plane and ψ_{θ} in the circumferential plane as follows:

$$M_r = D\left(\frac{\partial\psi_r}{\partial r} + v \frac{1}{r}\left(\psi_r + \frac{\partial\psi_\theta}{\partial\theta}\right)\right),\tag{7a}$$

$$M_{\theta} = D\left(\frac{1}{r}\left(\psi_r + \frac{\partial\psi_{\theta}}{\partial\theta}\right) + v\frac{\partial\psi_r}{\partial r}\right),\tag{7b}$$

$$M_{r\theta} = \frac{1-v}{2} D\left(\frac{1}{r} \left(\frac{\partial \psi_r}{\partial \theta} - \psi_\theta\right) + \frac{\partial \psi_\theta}{\partial r}\right)$$
(7c)

and

$$Q_r = \kappa Gh\left(\psi_r + \frac{\partial w}{\partial r}\right),\tag{8a}$$

$$Q_{\theta} = \kappa Gh\left(\psi_{\theta} + \frac{1}{r}\frac{\partial w}{\partial \theta}\right),\tag{8b}$$

where

$$D = \frac{Eh^3}{12(1-v^2)}$$
(9)

and E, G and v are Young's modulus, shear modulus and the Poisson ratio of the plate respectively, and κ is the shear correction factor.

Using the following dimensionless parameters,

$$R = r/a, \ \Theta = \theta/\alpha, \ W = w/a, \ \Psi_R = \psi_r, \ \Psi_\Theta = \psi_\theta, \ \delta = h/a,$$
(10a)

$$T = t/t_0, \quad t_0 = \sqrt{\frac{\rho a^2 (1 - v^2)}{E}},$$
 (10b)

and substituting equations (7) and (8) into equation (6), one can normalize the governing equations as follows:

$$R^{2} \frac{\partial^{2} \Psi_{R}}{\partial R^{2}} + R \frac{\partial \Psi_{R}}{\partial R} - (1 + \xi R^{2}) \Psi_{R} + \frac{(1 - v)}{2\alpha^{2}} \frac{\partial^{2} \Psi_{R}}{\partial \Theta^{2}} + \frac{(1 + v)}{2\alpha} R \frac{\partial^{2} \Psi_{\Theta}}{\partial R \partial \Theta}$$

$$- \frac{(3 - v)}{2\alpha} \frac{\partial \Psi_{\theta}}{\partial \Theta} - \xi R^{2} \frac{\partial W}{\partial R} = R^{2} \frac{\partial^{2} \Psi_{R}}{\partial T^{2}}, \qquad (11a)$$

$$\frac{(1 + v)}{2} R \frac{\partial^{2} \Psi_{R}}{\partial R \partial \Theta} + \frac{(3 - v)}{2\alpha} \frac{\partial \Psi_{R}}{\partial \Theta} + \frac{1}{\alpha^{2}} \frac{\partial^{2} \Psi_{\Theta}}{\partial \Theta^{2}} + \frac{(1 - v)}{2} R^{2} \frac{\partial^{2} \Psi_{\Theta}}{\partial R^{2}}$$

$$+ \frac{(1 - v)}{2} R \frac{\partial \Psi_{\Theta}}{\partial R} - \left[\frac{(1 - v)}{2} + \xi R^{2} \right] \Psi_{\Theta} - \frac{\xi}{\alpha} R \frac{\partial W}{\partial \Theta} = R^{2} \frac{\partial^{2} \Psi_{\Theta}}{\partial T^{2}}, \qquad (11b)$$

$$\left(R^{2} \frac{\partial^{2} W}{\partial R^{2}} + R \frac{\partial W}{\partial R} + \frac{1}{\alpha^{2}} \frac{\partial^{2} W}{\partial \Theta^{2}} \right) + \left(R^{2} \frac{\partial \Psi_{R}}{\partial R} + R \Psi_{R} \right)$$

$$+ \frac{R}{\alpha} \frac{\partial \Psi_{\Theta}}{\partial \Theta} = \frac{2R^{2}}{\kappa(1 - v)} \frac{\partial^{2} W}{\partial T^{2}}, \qquad (11c)$$

where

$$\xi = \frac{6\kappa(1-\nu)}{\delta^2} \tag{12}$$

and the stress-displacement relationships are given by

$$\overline{M}_{R} = \frac{\partial \Psi_{R}}{\partial R} + v \frac{1}{R} \left(\Psi_{R} + \frac{1}{\alpha} \frac{\partial \Psi_{\Theta}}{\partial \Theta} \right),$$
(13a)

$$\overline{M}_{\Theta} = \frac{1}{R} \left(\Psi_R + \frac{1}{\alpha} \frac{\partial \Psi_{\Theta}}{\partial \Theta} \right) + v \frac{\partial \Psi_R}{\partial R}, \qquad (13b)$$

$$\overline{M}_{R\Theta} = \frac{1-\nu}{2} \left[\frac{1}{R} \left(\frac{1}{\alpha} \frac{\partial \Psi_R}{\partial \Theta} - \Psi_\Theta \right) + \frac{\partial \Psi_\Theta}{\partial R} \right],$$
(13c)

where $\overline{M}_R = M_r/(D/a)$, $\overline{M}_{\Theta} = M_{\theta}/(D/a)$ and $\overline{M}_{R\Theta} = M_{r\theta}/(D/a)$.

For free vibration, the solutions of motion in time can be assumed as

$$W(R, \Theta, T) = W_j(R, \Theta) e^{i\Omega_j T}, \quad \Psi_R(R, \Theta, T) = \Psi_{Rj}(R, \Theta) e^{i\Omega_j T},$$
$$\Psi_{\Theta}(R, \Theta, T) = \Psi_{\Theta j}(R, \Theta) e^{i\Omega_j T}, \quad (14a, b, c)$$

where Ω_i is the eigenvalue of the *j*th mode of vibration.

Substitution of equation (14) into equation (11) leads to

$$R^{2} \frac{\partial^{2} \Psi_{R}}{\partial R^{2}} + R \frac{\partial \Psi_{R}}{\partial R} - (1 + \xi R^{2}) \Psi_{R} + \frac{(1 - v)}{2\alpha^{2}} \frac{\partial^{2} \Psi_{R}}{\partial \Theta^{2}} + \frac{(1 + v)}{2\alpha} R \frac{\partial^{2} \Psi_{\Theta}}{\partial R \partial \Theta}$$

$$- \frac{(3 - v)}{2\alpha} \frac{\partial \Psi_{\Theta}}{\partial \Theta} - \xi R^{2} \frac{\partial W}{\partial R} = -R^{2} \Omega^{2} \Psi_{R}, \qquad (15a)$$

$$\frac{(1 + v)}{2\alpha} R \frac{\partial^{2} \Psi_{R}}{\partial R \partial \Theta} + \frac{(3 - v)}{2\alpha} \frac{\partial \Psi_{R}}{\partial \Theta} + \frac{1}{\alpha^{2}} \frac{\partial^{2} \Psi_{\Theta}}{\partial \Theta^{2}} + \frac{(1 - v)}{2} R^{2} \frac{\partial^{2} \Psi_{\Theta}}{\partial R^{2}}$$

$$+ \frac{(1 - v)}{2} R \frac{\partial \Psi_{\Theta}}{\partial R} - \left[\frac{(1 - v)}{2} + \xi R^{2} \right] \Psi_{\Theta} - \frac{\xi}{\alpha} R \frac{\partial W}{\partial \Theta} = -R^{2} \Omega^{2} \Psi_{\Theta}, \quad (15b)$$

$$\left(R^{2} \frac{\partial^{2} W}{\partial R^{2}} + R \frac{\partial W}{\partial R} + \frac{1}{\alpha^{2}} \frac{\partial^{2} W}{\partial \Theta^{2}} \right) + \left(R^{2} \frac{\partial \Psi_{R}}{\partial R} + R \Psi_{R} \right)$$

$$+ \frac{R}{\alpha} \frac{\partial \Psi_{\Theta}}{\partial \Theta} = -\frac{2R^{2}}{\kappa(1 - v)} \Omega^{2} W \qquad (15c)$$

in which and also in the following, W, Ψ_R , Ψ_Θ and Ω should have been taken as $W_j(R, \Theta)$, $\Psi_{Rj}(R, \Theta)$, $\Psi_{\Theta j}(R, \Theta)$ and Ω_j respectively for the *j*th mode of vibration, but the suffix *j* is omitted for the sake of convenience.

According to the differential quadrature procedure, the normalized governing equations (15) will be transformed into the following discrete forms:

$$\begin{bmatrix} \sum_{k=1}^{N_{R}} (C_{ik}^{(2)} R_{i}^{2} + C_{ik}^{(1)} R_{i}) \Psi_{R}(k, j) \end{bmatrix} - (1 + \zeta R_{i}^{2}) \Psi_{R}(i, j) \\ + \frac{1 - v}{2} \beta^{2} \begin{bmatrix} \sum_{m=1}^{N_{\Theta}} \bar{C}_{jm}^{(2)} \Psi_{R}(i, m) \end{bmatrix} + \frac{1 + v}{2} \beta R_{i} \begin{bmatrix} \sum_{k=1}^{N_{R}} C_{ik}^{(1)} \sum_{m=1}^{N_{\Theta}} \bar{C}_{jm}^{(1)} \Psi_{\Theta}(k, m) \end{bmatrix} \\ - \frac{(3 - v)}{2} \beta \begin{bmatrix} \sum_{m=1}^{N_{\Theta}} \bar{C}_{jm} \Psi_{\Theta}(i, m) \end{bmatrix} - \zeta R_{i}^{2} \begin{bmatrix} \sum_{k=1}^{N_{R}} C_{ik}^{(1)} W(k, j) \end{bmatrix} = - \Omega^{2} R_{i}^{2} \Psi_{R}(i, j),$$
(16a)

DQM FOR VIBRATION OF ANNULAR SECTOR MINDLIN PLATES

$$\frac{1+v}{2}\beta R_{i} \left[\sum_{k=1}^{N_{R}} C_{ik}^{(1)} \sum_{m=1}^{N_{\Theta}} \bar{C}_{jm}^{(1)} \Psi_{R}(k,m)\right] + \frac{3-v}{2}\beta \left[\sum_{m=1}^{N_{\Theta}} \bar{C}_{jm}^{(1)} \Psi_{R}(i,m)\right] \\ + \beta^{2} \left[\sum_{m=1}^{N_{\Theta}} \bar{C}_{jm}^{(2)} \Psi_{\Theta}(i,m)\right] + \frac{1-v}{2} \left[\sum_{k=1}^{N_{R}} (C_{ik}^{(2)} R_{i}^{2} + C_{ik}^{(1)} R_{i}) \Psi_{\Theta}(k,j)\right] \\ - \left(\frac{1-v}{2} + \xi R_{i}^{2}\right) \Psi_{\Theta}(i,j) - \xi \beta R_{i} \left[\sum_{m=1}^{N_{\Theta}} \bar{C}_{jm}^{(1)} W(i,m)\right] = -\Omega^{2} R_{i}^{2} \Psi_{\Theta}(i,j),$$
(16b)

$$\left[\sum_{k=1}^{N_{R}} \left(C_{ik}^{(2)}R_{i}^{2} + C_{ik}^{(1)}R_{i}\right)W(k,j)\right] + \beta^{2}\left[\sum_{m=1}^{N_{\Theta}} \bar{C}_{jm}^{(2)}W(i,m)\right] + R_{i}^{2}\left[\sum_{k=1}^{N_{R}} C_{ik}^{(1)}\Psi_{R}(k,j)\right]$$

$$+ R_{i}\Psi_{R}(i,j) + \beta R_{i} \left[\sum_{m=1}^{N_{\Theta}} \bar{C}_{jm}^{(1)}\Psi_{\Theta}(i,m)\right] = -\frac{2}{\kappa(1-\nu)}\Omega^{2}R_{i}^{2}W(i,j),$$
(16c)

where $i = 2, ..., N_R - 1$ and $j = 2, ..., N_{\Theta} - 1$. $C_{rs}^{(n)}$ and $\overline{C}_{rs}^{(n)}$ are the weighting coefficients for the *n*th order partial derivatives of W, Ψ_R and Ψ_{Θ} with respect to R and Θ respectively.

It should be noticed that the domain [b/a, 1] of dimensionless variable R is not the often used [0, 1] or [-1, 1]. Therefore, the DQ weighting coefficients, $C_{rs}^{(n)}$ and $\bar{C}_{rs}^{(n)}$, are different from the standard ones corresponding to the [0, 1] or [-1, 1] domain.

3.2. BOUNDARY CONDITIONS

The boundary conditions considered herein are divided into four kinds. Taking the radial edge with θ = constant, for example, we have

Simply supported edge (S):
$$w = M_{\theta} = \psi_r = 0,$$
 (17)

(S'):
$$w = M_{\theta} = M_{r\theta} = 0,$$
 (18)

Clamped edge (C):
$$w = \psi_r = \psi_\theta = 0$$
, (19)

Free edge (F):
$$Q_{\theta} = M_{\theta} = M_{r\theta} = 0.$$
 (20)

Substituting equations (7) and (8) into equations (17)–(20) and normalizing them lead to

Simply supported edge (S):

$$W = 0, \quad vR \frac{\partial \Psi_R}{\partial R} + \Psi_R + \frac{1}{\alpha} \frac{\partial \Psi_\Theta}{\partial \Theta} = 0, \quad \Psi_R = 0.$$
 (21)

341

Simply supported edge (S'):

$$W = 0, \quad vR \frac{\partial \Psi_R}{\partial R} + \Psi_R + \frac{1}{\alpha} \frac{\partial \Psi_\Theta}{\partial \Theta} = 0, \quad \frac{1}{\alpha} \frac{\partial \Psi_R}{\partial \Theta} - \Psi_\Theta + R \frac{\partial \Psi_\Theta}{\partial R} = 0.$$
(22)

Clamped edge (C):

$$W = 0, \quad \Psi_R = 0, \quad \Psi_\Theta = 0 \tag{23}$$

Free edge (F):

$$\frac{1}{\alpha}\frac{\partial W}{\partial \Theta} + R\Psi_{\Theta} = 0, \quad vR\frac{\partial \Psi_{R}}{\partial R} + \Psi_{R} + \frac{1}{\alpha}\frac{\partial \Psi_{\Theta}}{\partial \Theta} = 0, \quad \frac{1}{\alpha}\frac{\partial \Psi_{R}}{\partial \Theta} - \Psi_{\Theta} + R\frac{\partial \Psi_{\Theta}}{\partial R} = 0.$$
(24)

Using the DQ procedure, the normalized boundary conditions presented by equations (21)–(24) for an edge of Θ = constant, can then be described in the following discrete forms. For an example, at the edge Θ = 0:

(S)
$$W_{i1} = 0,$$
 (25a)

$$vR_{i}\sum_{k=1}^{N_{R}}C_{k1}^{(1)}\Psi_{R}(k,1) + \Psi_{R} + \frac{1}{\alpha}\sum_{m=1}^{N_{\Theta}}\bar{C}_{1m}^{(1)}\Psi_{\Theta}(i,m) = 0,$$
(25b)

$$\Psi_R(i,1) = 0. \tag{25c}$$

$$(S') W_{1j} = 0, (26a)$$

$$vR_{i}\sum_{k=1}^{N_{R}}C_{k1}^{(1)}\Psi_{R}(k,1) + \Psi_{R} + \frac{1}{\alpha}\sum_{m=1}^{N_{\Theta}}\bar{C}_{1m}^{(1)}\Psi_{\Theta}(i,m) = 0,$$
(26b)

$$\frac{1}{\alpha} \sum_{m=1}^{N_{\Theta}} \bar{C}_{1m}^{(1)} \Psi_{R}(i,m) - \Psi_{\Theta}(i,1) + R_{i} \sum_{k=1}^{N_{R}} C_{ik}^{(1)} \Psi_{\Theta}(k,1) = 0,$$
(26c)

(C)
$$W_{i1} = 0,$$
 (27a)

$$\Psi_R(i,1) = 0, \tag{27b}$$

$$\Psi_{\theta}(i,1) = 0, \tag{27c}$$

(F)
$$\frac{1}{\alpha} \sum_{k=1}^{N_{\Theta}} \bar{C}_{1k}^{(1)} W(i,m) + R_i \Psi_{\Theta}(i,1) = 0,$$
 (28a)

$$vR_{i}\sum_{k=1}^{N_{R}}C_{k1}^{(1)}\Psi_{R}(k,1) + \Psi_{R} + \frac{1}{\alpha}\sum_{m=1}^{N_{\Theta}}\bar{C}_{1m}^{(1)}\Psi_{\Theta}(i,m) = 0, \qquad (28b)$$

342

$$\frac{1}{\alpha} \sum_{m=1}^{N_{\Theta}} \bar{C}_{1m}^{(1)} \Psi_{R}(i,m) - \Psi_{\Theta}(i,1) + R_{i} \sum_{k=1}^{N_{R}} C_{ik}^{(1)} \Psi_{\Theta}(k,1) = 0,$$

 $i = 1, 2, ..., N_{R}$ for equations (25a)–(28c). (28c)

For the edge of $\Theta = 1$, the discrete boundary conditions can be simply obtained by substituting all the subscripts of 1 into equations (25)–(28) with N_{Θ} . The boundary conditions for the circular edge with R = constant can also be written in the same manner.

4. NUMERICAL RESULTS AND DISCUSSION

Based on the formulas presented in the previous section, a programme has been built up to solve the eigenvalues of the plate. For all the calculations here, the Poisson ratio and the shear correction factor κ have been taken as v = 0.3 and $\pi^2/12$. The grid points employed in computation are designated by

$$R_{i} = \left\{ b + \frac{1}{2} \left[1 - \cos\left(\frac{(i-1)\pi}{N_{R}-1}\right) \right] (a-b) \right\} / a, \quad i = 1, 2, \dots, N_{R},$$
(29a)

$$\Theta_{j} = \frac{1}{2} \left[1 - \cos\left(\frac{(j-1)\pi}{N_{\Theta} - 1}\right) \right], \quad j = 1, 2, \dots, N_{\Theta}.$$
(29b)

The moderately thick isotropic plates with six different boundary conditions of SSSS, CCCC, CSCS, CFCF, FCSC and SCFC have been considered here. The symbol FCSC, for instance, represents the free, clamped, simply supported and clamped boundary conditions of edges 1, 2, 3 and 4 on the plate shown in Figure 1 respectively. The eigenvalues are expressed in terms of non-dimensional frequency parameter λ^2 which is defined as follows:

$$\lambda^2 = \omega a^2 \sqrt{\frac{\rho h}{D}} \quad \text{and} \quad \omega = \Omega \sqrt{\frac{E}{\rho a^2 (1 - v^2)}}.$$
 (30)

4.1. CONVERGENCE AND ACCURACY STUDIES

The convergence studies of the DQ method for free vibration of annular sector Mindlin plates should be carried out first to reveal the convergence characteristics of this numerical method for the problem concerned and also to ensure the accuracy of the present results. In the mean time, the effects of boundary conditions, relative thickness, inner-to-outer cut-out ratio and sector angle on the convergence properties should also be investigated so that the number of grid points required for an effective solution of the problem can be determined.

Figures 2–4 show the convergence patterns of an annular sector plate with SSSS, CCCC and CSCS boundary conditions respectively. The normalized frequency

Figure 2. Convergence pattern of normalized frequency parameter $\lambda^2/\lambda_{exact}^2$ of modes 1, 3, 4 and 5 for a simply supported annular sector plate.

Figure 3. Convergence pattern of normalized frequency parameter $\lambda^2/\lambda_{exact}^2$ of first five modes for a fully clamped annular sector plate.

parameters $\lambda^2/\lambda_{exact}^2$ of the first five mode sequences are presented in these figures, and the values of λ_{exact}^2 are the exact solutions taken from Ramakrishnan and Kunikkasseril [2]. The convergence pattern of CFCF annular sector plate is shown

Figure 4. Convergence pattern of normalized frequency parameter $\lambda^2/\lambda_{exact}^2$ of first five modes for an annular sector plate with CSCS boundary conditions.

in Figure 5 and the parameter λ_c^2 stands for the completely converged DQ results (with five significant digits). In Figures 2, 4 and 5, the sector angle α and the inner-to-outer cut-out ratio b/a are taken to be 45° and 0.5 respectively, whereas in Figure 3, the value of α and b/a are 90° and 0.00001 respectively so that the direct comparison can be made between the present DQ results and the existing exact solutions [2]. For all the four cases, the relative thickness h/a is taken to be 0.005. From these figures, it is found that (1) for all the four kinds of boundary conditions considered here, the DQ results of the annular sector plates converge to the exact solutions (Figures 2-4) or the corresponding converged values with the increase of the grid points (Figure 5); (2) among the DQ results of these four cases, only the fully clamped plate (CCCC) demonstrates the monotonic convergence pattern, while all other cases (SSSS, CSCS and CFCF) show the fluctuating characteristics in the convergence patterns; (3) for different mode sequences, the convergent speeds are different. Normally, the higher the mode sequence, the slower the convergent speed; (4) for all the mode sequences, the boundary condition plays the most important part in the convergent speed of DQ solutions for the free vibrations of annular sector plates. For example, for the fully clamped, simply supported boundary condition and their combinations, all the frequency parameters completely converge to their corresponding converged values when the number of the grid points for each co-ordinate variable is equal to or greater than 11, whereas for the CFCF plate, even when the number of grid points for each co-ordinate is equal to 25, the results are still fluctuating slightly.

Figure 5. Convergence pattern of normalized frequency parameter $\lambda^2/\lambda_{exact}^2$ of first five modes for an annular sector plate with CFCF boundary conditions.

In order to further reveal the effects of other parameters such as relative thickness h/a, sector angle α , and the inner-to-outer cut-out ratio b/a, the most difficult convergent case CFCF among the six cases concerned in this paper is selected. Figure 6 shows the effects of plate thickness h/a on the convergence of the frequency parameter λ^2 of the first and the fourth modes. It is observed that the relative thickness h/a has the significant effects on the convergent speed of the DQ solutions. The thicker a plate is (h/a = 0.005 - 0.2), the faster the convergent speed for both the fundamental frequency and the higher mode of frequencies. In other words, increasing the relative thickness h/a from 0.005 to 0.2 can greatly improve the convergence ratio of the DQ results with the refinement of the grid. The effects of the sector angle on the convergence of frequency parameter λ^2 of the first and the third modes for the annular sector plate are illustrated in Figure 7. It is very clear to see that for the fundamental frequency (Figure 7(a)), with the increase of the sector angle (in the range of $30-120^{\circ}$), the convergent rate increases, but for the higher mode such as the third mode (Figure 7(b)), this conclusion is only true for the grid points of each co-ordinate variable between 5 and 12; if the grid points along each co-ordinate direction are over 13, the value of the sector angle will almost bear no effects on the convergent rate. Figure 8 shows the effects of the inner-to-outer cut-out ratio on the convergence of frequency parameter λ^2 of the first and the third modes of the annular sector plate. It is also found that the inner-to-outer cut-out ratio b/a can only have the effect on the convergence patterns when the grid points for each co-ordinate variable are smaller than 14; when the grid points are larger

Figure 6. Effects of plate thickness h/a on convergence of normalized frequency parameter λ^2/λ_c^2 of annular sector plate with CFCF boundary conditions: (a) mode $1 - \Delta$, h/a = 0.005; $-\bigcirc$, h/a = 0.01; $-\bigcirc$, h/a = 0.01; $-\bigcirc$, h/a = 0.02; (b) mode 4. $-\bigcirc$, h/a = 0.005; $-\diamondsuit$, h/a = 0.01; $-\times$, h/a = 0.01; $-\bigcirc$, h/a = 0.02; (b) mode 4. $-\bigcirc$, h/a = 0.005; $-\diamondsuit$, h/a = 0.01; $-\times$, h/a = 0.01; $-\bigcirc$, h/a = 0.02; (b) mode 4.

than 14, the convergent rates for both of the first and the fifth modes of the frequency parameter λ^2 are completely dominated by the number of the grid points.

To examine the accuracy of the converged DQ results, comparisons with the earlier results obtained by using other methods such as the analytical method [2], the Mindlin finite-strip method [15] and the Rayleigh–Ritz method [25] are made for four boundary conditions (SSSS, CCCC, CSCS and CFCF) in Table 1. It is observed that close agreement has been obtained for all the cases presented in the table.

4.2. PARAMETRIC STUDIES

The first six natural frequencies of the annular sector plates with six boundary conditions, different relative thicknesses, different sector angles and inner-to-outer radius ratios are computed by using the DQ method and presented in Tables 2–7. The values of sector angle, relative thickness and inner-to-outer radius ratio are taken as $\alpha = 30$, 60, and 120° , h/a = 0.01, 0.1 and 0.2 and b/a = 0.1, 0.25 and 0.5 respectively in the calculation. All the results shown in these tables are completely converged ones with five significant digits for the thick plates and four significant digits for the thin plates. Based on the results in all these tables, the following conclusion remarks can be made:

(1) As the sector angle increases, for the annular sector plate with SSSS, CCCC, CSCS, FCSC and SCFC boundary conditions, he first six frequency parameters decrease significantly for any given relative thickness h/a and

Figure 7. Effects of sector angle α on convergence of normalized frequency parameter λ^2/λ_c^2 of annular sector plate with CFCF boundary conditions: (a) mode 1; (b) mode 3. $-\Delta$, $\alpha = 30$; $-\bigcirc$, $\alpha = 60$; $-\Box$, $\alpha = 90$; $-\Diamond$, $\alpha = 120$.

Figure 8. Effects of plate cut-out ratio b/a on convergence of normalized frequency parameter λ^2/λ_c^2 of annular sector plate with CFCF boundary conditions: (a) mode 1; (b) mode 5. $-\Delta$ -, b/a = 0.1; $-\bigcirc$ -, b/a = 0.25; $-\Box$ -, b/a = 0.4; $-\diamondsuit$ -, b/a = 0.5.

inner-to-outer radius ratio b/a, but for the annular sector plate with CFCF boundary condition, the frequency parameters may increase for some modes such as the first and third modes in the case of b/a = 0.1. This means that increasing the sector angles will lead to the decrease of the flexural stiffness for the annular sector plates with SSSS, CCCC, CSCS, FCSC and SCFC boundary conditions, but may not necessarily reduce the flexural stiffness for the CFCF plates.

TABLE 1

Comparison study of frequency parameters, $\lambda^2 = \omega a^2 \sqrt{\rho h/D}$, for annular sector plates with different boundary conditions

			Davidania	Matha J		Ν	Node sequence		
α (deg)	b/a	h/a	condition	used	1	2	3	4	5
45	0.5	0.005	SSSS	DQM [†]	68.357	150.88	189.43	278.03	283.22
•	0.5	Thin plate	SSSS	exact [‡]	68.380	150.96	189.61	278.46	283.59
30	0.5	0.1	SSSS	DQM'	88.486	171.23	199.86	275.09	280.69
	0.5	0.1	2222	FSM ³ DDM ¹	88.56	1/1.5	200.2	275.07	281.1
	0.5	0.1	2222		88.330 67.337	1/1.03	200.29	2/5.07	281.33
	0.5	0.2	2222	ESM§	67.41	115.62	132.0	171.2	174.3
	0.5	$0.2 \\ 0.2$	SSSS	RRM	67.394	116.29	132.0	171.54	174.68
60	0.5	0.1	SSSS	DOM [†]	50.982	88.486	138.60	140.70	171.23
00	0.5	0.1	SSSS	FSM [§]	51.02	88.56	138.9	140.9	171.5
	0.5	0.1	SSSS	RRM	51.025	88.530	138.94	140.89	171.63
	0.5	0.2	SSSS	DQM^{\dagger}	41.995	67.237	97.320	98.704	115.82
	0.5	0.2	SSSS	FSM§	42.07	67.41	97.62	99.00	116.2
	0.2	0.2	SSSS	RRM	42.066	67.394	97.698	99.040	116.29
90	0.00001	0.002	CCCC	$\mathrm{D}\mathrm{Q}\mathrm{M}^{\dagger}$	48.766	87.722	104.81	136.80	164.39
	0.00001	Thin plate	CCCC	exact [‡]	48.70	88·13	105.06	138.33	165.31
	0.5	0.002	CCCC	DQM [†]	95.140	114.83	150.35	201.07	252.73
	0.2	Thin plate	CCCC	exact [‡]	95.04	114.52	151.24	204.41	253.74
45	0.5	0.002	CSCS	$\mathrm{D}\mathrm{Q}\mathrm{M}^\dagger$	107.47	178.61	268.98	305.33	345.68
	0.2	Thin plate	CSCS	exact [‡]	107.63	178.77	169.13	309.34	353-27
60	0.5	0.1	CSCS	DQM	76.902	103.68	150.41	167.33	191.59
	0.5	0.1	CSCS	FSM ⁸	77.13	103.9	150.7	167.9	192.1
	0.5	0.1	CSCS		77.082	103.91	150.78	167.89	192.22
	0.5	0.2	CSCS	DQM ESM [§]	52.24	72.152	101.1	103.02	119.41
	0.5	0.2	CSCS	L 2 M	52.221	72.40	101.4	103.52	119.07
45	0.3	0.2	CECE		61.112	72:430	132.57	169.19	190.41
45	0.4	0.001	CFCF	RRM	61.160	75.150	132.86	169.32	190.26
	0.4	0.2	CFCF	DOM [†]	37.292	42:403	71.603	77.536	85.595
	0.4	0.2	CFCF	RRM	37.441	42.552	71.804	77.890	85.947
90	0.4	0.1	CFCF	DQM^{\dagger}	51.304	53.649	63.660	84.339	114.59
	0.4	0.1	CFCF	RRM	51.406	53.760	63.785	84.497	114.82
	0.4	0.2	CFCF	DQM^{\dagger}	37.446	38.975	46.046	60.568	77.541
	0.4	0.2	CFCF	RRM	37.597	39.126	46.202	60.761	77.895

[†] Present differential quadrature method. [‡] Exact analytical method by Ramkrishnan and Kunukkasseril [2].

[§]Finite-strip method by Mizusawa [15]. [¶]Rayleigh-Ritz method by Xiang *et al.* [25].

K. M. LIEW AND F.-L. LIU

TABLE 2

Frequency parameters, $\lambda^2 = \omega a^2 \sqrt{\rho h/D}$, for annular sector plates with SSSS boundary conditions

			Mode of sequence					
α (deg)	b/a	h/a	1	2	3	4	5	6
30	0.10	0·01 0·10 0·20	97·817 84·440 64·693	183·322 143·881 100·536	276.687 199.711 131.473	286·881 205·375 134·512	409·124 268·226 165·947	428·095 277·275 167·443
	0.25	$0.01 \\ 0.10 \\ 0.20$	97·828 84·447 64·697	183·597 144·050 100·628	276·686 199·711 131·473	289·176 206·599 135·143	418·904 272·808 167·286	428.089 277.274 169.732
	0.50	$0.01 \\ 0.10 \\ 0.20$	103·238 88·486 67·237	227·683 171·234 115·823	276·957 199·860 131·552	423·932 275·089 170·760	435·419 280·693 173·780	534·834 325·311 173·836
60	0.10	$0.01 \\ 0.10 \\ 0.20$	39·948 37·366 32·092	94·539 81·937 63·072	97·817 84·440 64·693	$168.874 \\ 134.424 \\ 95.050$	177.030 139.820 98.205	183·322 143·881 100·536
	0.25	$0.01 \\ 0.10 \\ 0.20$	40.835 38.122 32.633	97·828 84·447 64·697	101·379 87·009 66·211	177.030 139.820 98.205	183·597 144·050 100·628	191·747 149·010 103·261
	0.50	0.01 0.10 0.20	55·898 50·982 41·996	103·238 88·486 67·237	175·437 138·598 97·320	178·407 140·702 98·704	227.683 171.234 115.823	276·956 199·860 131·552
120	0.10	$0.01 \\ 0.10 \\ 0.20$	20·492 19·675 17·862	39·948 37·366 32·092	62·727 56·463 45·724	66·136 59·535 48·129	94·539 81·937 63·072	97·817 84·440 64·693
	0.25	0.20 0.01 0.10 0.20	24·076 23·019 20·612	40.835 38.122 32.633	66·248 59·624 48·186	78·861 69·557 54:668	97·827 84·447 64·697	101·379 87·009 66·211
	0.50	0·01 0·10 0·20	43·961 40·778 34·494	55.898 50.982 41.996	75·788 67·272 53·340	103·238 88·486 67·237	137.650 113.335 82.604	162·478 130·056 92·334

TABLE 3

			Mode of sequence							
α (deg)	b/a	h/a	1	2	3	4	5	6		
30	0.10	0.01	187·056	297.335	412.551	424·333	569.715	590·374		
		0.10	128.289	183.331	234.414	240.017	297.884	303.995		
		0.20	81.177	110.699	136.614	141.531	171.828	173.966		
	0.25	0.01	187.056	297.337	412.547	424·348	569.759	590.325		
		0.10	128.290	183.366	234.414	240.451	300.161	303.995		
		0.20	81.183	110.764	136.614	141.961	173.469	173.967		
	0.50	0.01	190.942	338.662	412.663	562.649	595·274	714.458		
		0.10	131.375	205.763	234.581	300.052	307.465	349.689		
		0.20	83.457	123.157	136.780	173.724	176.299	198.360		

Frequency parameters, $\lambda^2 = \omega a^2 \sqrt{\rho h/D}$, for annular sector plates with CCCC boundary conditions

			Mode of sequence						
α (deg)	b/a	h/a	1	2	3	4	5	6	
60	0.10	$0.01 \\ 0.10 \\ 0.20$	75·445 62·412 45·452	144·531 108·355 72·576	148·163 110·727 73·962	232·571 159·482 101·611	241·913 164·547 104·487	249·029 167·779 105·855	
	0.25	$0.01 \\ 0.10 \\ 0.20$	75·874 62·839 45·853	148·165 110·734 73·975	149·750 112·141 74·973	241·864 164·502 104·342	249·154 167·942 106·017	253.613 171.670 108.612	
	0.50	0·01 0·10 0·20	105·750 82·164 56·594	158.636 116.624 77.357	244·320 165·724 103·806	261·859 169·620 105·145	314·706 198·127 121·160	356·056 221·583 135·295	
120	0.10	$0.01 \\ 0.10 \\ 0.20$	38·009 34·218 27·602	62·712 53·974 41·001	89·369 73·698 53·406	94·448 77·387 55·878	126·422 99·601 69·392	131·473 102·533 71·118	
	0.25	0.01 0.10 0.20	45·421 39·817 31·056	64·539 55·216 41·814	94·114 77·237 55·951	116·003 90·627 62·420	130·199 102·072 71·127	139·097 106·624 72·862	
	0.50	0·01 0·10 0·20	91·936 72·317 49·788	101·564 79·149 54·674	119·268 91·761 63·253	145·796 109·959 74·838	180·886 132·549 88·418	224·242 158·272 98·912	

 TABLE 3 (Continued)

TABLE 4

Frequency parameters, $\lambda^2 = \omega a^2 \sqrt{\rho h/D}$, for annular sector plates with CSCS boundary conditions

			Mode of sequence					
α (deg)	b/a	h/a	1	2	3	4	5	6
30	0.10	0.01 0.10 0.20	113·912 93·450 67·933	205·158 152·635 102·556	302·082 206·900 132·862	313·934 213·083 135·609	441·102 274·652 165·947	459·708 283·188 167·818
	0.25	$0.01 \\ 0.10 \\ 0.20$	114·047 93·491 67·946	206·885 153·114 102·712	302·081 206·900 132·862	322·509 215·367 136·414	459·708 281·195 167·286	466·302 283·188 170·310
	0.50	$0.01 \\ 0.10 \\ 0.20$	135·047 103·682 72·152	297·984 191·593 119·412	303·798 207·276 132·981	482·085 288·449 172·041	533·976 293·159 173·780	568·787 330·323 174·731
60	0.10	$0.01 \\ 0.10 \\ 0.20$	51·149 45·840 36·787	111·796 91·764 66·656	113·912 93·450 67·933	192·926 144·269 97·433	197·884 148·134 100·317	205·158 152·635 102·556
	0.25	0·01 0·10 0·20	55·913 48·727 38·137	114·047 93·491 67·946	130·885 101·804 71·004	197·886 148·134 100·317	206·885 153·114 102·712	238·049 164·981 106·541
	0.50	0·01 0·10 0·20	98·586 76·902 53·099	135·047 103·682 72·152	204·817 150·413 101·108	257·257 167·327 103·024	297·984 191·593 119·412	303·798 207·276 132·981

 TABLE 4 (Continued)

			Mode of sequence						
α (deg)	b/a	h/a	1	2	3	4	5	6	
120	0·10 0·25 0·50	$\begin{array}{c} 0.01 \\ 0.10 \\ 0.20 \\ 0.01 \\ 0.10 \\ 0.20 \\ 0.01 \\ 0.10 \\ 0.20 \end{array}$	31.730 28.570 23.678 42.728 37.415 29.161 91.198 71.730 49.296	51.149 45.840 36.787 55.913 48.727 38.137 98.586 76.902 53.099	79-752 68-489 50-975 80-749 68-915 52-248 112-749 87-339 60-813	83.049 68.764 52.087 113.861 89.097 61.629 135.047 103.682 72.152	111.796 91.764 66.656 114.047 93.491 67.946 165.879 125.174 85.948	113.912 93.450 67.933 130.885 101.804 71.004 204.813 150.412 98.802	

TABLE 5

Frequency parameters, $\lambda^2 = \omega a^2 \sqrt{\rho h/D}$, for annular sector plates with CFCF boundary conditions

					Mode of	sequence		
α (deg)	b/a	h/a	1	2	3	4	5	6
30	0.10	$0.01 \\ 0.10 \\ 0.20$	25·208 22·899	57·687 44·274 20-786	71·714 59·550	134·539 96·968	142·769 107·901 72·052	214·384 152·784
	0.25	0.20 0.01 0.10 0.20	38·101 33·525 26·348	68·438 53·091 36·830	106·238 83·363 57·447	158.962 113.967 74.655	209·174 146·217 93·864	214·522 155·742
	0.50	0·20 0·01 0·10 0·20	20 348 87·768 69·340 47·924	113·532 83·530 55·145	225·328 157·007 96·171	241.877 159.210 105.689	280·166 177·555 109·390	414·370 247·316 150·750
60	0.10	$0.01 \\ 0.10 \\ 0.20$	25·948 23·333 19·111	37·927 32·377 25·558	73·138 60·356 43·790	87·650 73·172 54·719	94·937 75·670 54·829	144·922 109·074 73·532
	0.25	$0.01 \\ 0.10 \\ 0.20$	38·700 34·045 26·590	48·442 41·016 31·187	89·177 73·542 54·551	107·410 84·271 58·063	122.868 94.253 65.020	161·807 123·847 85·224
	0.50	0·01 0·10 0·20	88·299 69·744 48·080	95·342 73·872 50·551	122·393 91·885 62·967	176·818 129·168 87·122	242·992 158·774 96·732	252·931 164·194 100·911
120	0.10	$0.01 \\ 0.10 \\ 0.20$	26·607 23·917 19·426	29·742 26·425 21·569	43·782 38·813 31·362	68·445 58·885 44·309	74·154 61·216 45·102	80·196 65·904 48·653
	0.25	0·01 0·10 0·20	39·018 34·381 26·783	41·513 36·177 28·096	51·556 44·214 34·204	71·462 60·501 46·051	100·598 82·771 58·044	$108.016 \\ 84.842 \\ 60.249$
	0.20	0·01 0·10 0·20	88·596 69·969 48·176	90·300 70·954 48·823	96·821 75·206 51·613	109·012 83·556 57·522	128·056 97·139 67·088	155·011 116·047 79·603

TABLE 6

					Mode of	sequence		
α (deg)	b/a	h/a	1	2	3	4	5	6
30	0.10	0.01	164.744	270.541	381·218	392·709	532·584	553.774
		0.10 0.20	11/·451 76·120	1/4.8// 108.731	225·774 134:641	232.863	291.989	297.736
	0.25	0.01	164.744	270.540	381.218	392.687	532.375	553.773
		0.10	117.433	174.827	225.699	232.598	290.929	297.689
		0.20	76.100	108.665	134.618	139.957	169.769	172.907
	0.50	0.01	164·287	260.459	365.713	381.206	549.096	552.856
		0.10	116.768	164.817	219.965	225.638	295.922	314.013
		0.20	75.306	100.278	134.507	135.602	170.904	178.246
60	0.10	0.01	61.366	125.725	129.094	208.799	218.162	224·722
		0.10	52.798	98·940	100.979	150.455	155.518	159.205
		0.20	40.140	69.360	70.050	99·310	101.624	103.774
	0.25	0.01	61.292	124.809	129.093	203.518	218.133	224.704
		0.10	52.640	97.856	100.975	143.874	155.501	159.129
	0.50	0.20	39.962	67.995	70.041	92.759	101.616	103.662
	0.20	0.10	30.95/	112.1/3	12/.4/9	209.481	21/./04	237.054
		0.20	48.028	63.522	99·492 68.671	147.923	101.211	1/2.333
		0.20	30.209	03.323	08.071	90.383	101-211	114.001
120	0.10	0.01	27.473	50.182	71.384	79.186	108.689	113.945
		0.10	25.564	44.981	61.785	67.990	89.766	93.376
	0.25	0.20	21.803	36.076	4/.523	51.656	65.775	6/.618
	0.25	0.10	20.304	49.938	65.099	/9.019	106.752	113.030
		0.20	24.320	35.808	42.010	51.556	67.995	95·192 67.564
	0.50	0.01	20780	45.088	74.395	76.806	103.058	110.811
	0.50	0.10	19.542	40.295	64.237	66.527	84.560	90.886
		0.20	16.408	32.224	48.889	52.411	62.893	65.870

Frequency parameters, $\lambda^2 = \omega a^2 \sqrt{\rho h/D}$, for annular sector plates with FCSC boundary conditions

TABLE 7

Frequency parameters, $\lambda^2 = \omega a^2 \sqrt{\rho h/D}$, for annular sector plates with SCFC boundary conditions

α (deg)	b/a	h/a	1	2	3	4	5	6
30	0·10 0·25	$\begin{array}{c} 0.01 \\ 0.10 \\ 0.20 \\ 0.01 \\ 0.10 \\ 0.20 \end{array}$	100·946 78·311 53·930 100·935 78·311 53·930	193·907 132·054 83·343 193·903 132·054 83·337	264·113 169·733 103·580 264·085 169·733 103·581	302·423 189·733 116·436 302·420 189·689 116·392	428·251 247·247 145·414 428·220 247·248 145·415	437·366 247·766 146·051 437·356 247·586 146·244

 TABLE 7 (Continued)

			Mode of sequence					
α (deg)	b/a	h/a	1	2	3	4	5	6
	0.50	0·01 0·10 0·20	100·912 78·280 53·836	194·463 132·778 84·880	264·053 169·733 103·584	322·615 208·024 130·199	437·361 247·349 145·670	500·669 275·278 161·410
60	0.10	$0.01 \\ 0.10 \\ 0.20$	28·110 25·767 21·578	71·774 60·447 44·981	76·547 63·647 46·734	$135 \cdot 330 \\104 \cdot 588 \\72 \cdot 173$	145·324 111·480 76·745	155·924 116·889 78·816
	0.25	0·01 0·10 0·20	28·104 25·764 21·566	71·765 60·447 44·981	76·446 63·498 46·695	135·314 104·589 72·176	145·857 112·517 78·487	155·919 116·887 78·825
	0.50	0·01 0·10 0·20	27·932 25·524 21·279	71·751 60·431 44·990	89·918 75·236 56·335	135·339 104·587 72·169	160·174 120·507 82·126	217·719 154·325 100·689
120	0.10	$0.01 \\ 0.10 \\ 0.20$	8·310 8·084 7·599	19·753 18·636 16·418	35·807 32·722 27·269	37·749 34·351 28·333	58·755 51·686 40·865	64·640 56·149 43·394
	0.25	0·01 0·10 0·20	8·209 7·975 7·484	19·743 18·628 16·412	36·490 33·380 27·889	39·091 35·716 29·703	58·760 51·702 40·878	64·862 56·398 43·776
	0.20	0·01 0·10 0·20	8·782 8·502 7·950	20·119 18·945 16·695	37·023 33·761 28·093	59·066 51·926 40·981	67·069 59·717 47·562	84·429 72·510 54·774

- (2) As the relative thickness h/a increases, the frequency parameters for the annular sector plate with any boundary conditions will decrease greatly for any given sector angle, mode sequence and inner-to-outer radius ratio.
- (3) For the CFCF annular sector plate, increasing the inner-to-outer radius ratio b/a from 0.1 to 0.5 will increase the values of frequency parameters regardless of the sector angle, mode sequences and relative thickness, but for other cases considered in this paper, the effect of inner-to-outer radius ratio b/a on the frequency parameter is not significant in the range of the values of b/a between 0.1 and 0.25; the effect will become significant in the range of the values of b/a from 0.25 to 0.5, and in this range, the frequency parameters for most vibration modes will increase whereas some modes of frequency parameters may decrease as the value of b/a increases.

For all the natural frequencies considered in these tables, except for the thin annular sector plate (h/a = 0.01) with at least one free edge, using 17 grid points along each co-ordinate variable will achieve the completely converged DQ results with five significant digits. But for the thin annular sector plates (h/a = 0.01) with at least one free edge such as CFCF, FCSC, or SCFC plates, using 17 grid points along each co-ordinate variable can only obtain the converged DQ results with three to four significant digits for some vibration modes. However, this has been accurate enough for the engineering applications.

5. CONCLUDING REMARKS

In this paper, the differential quadrature method has been applied to solve the free vibration problem of thick annular sector plates based on the Mindlin first order shear deformation theory. The first six natural frequencies have been calculated for the plates with arbitrary combinations of free, clamped and simply supported boundary conditions and with various relative thickness, sector angle and inner-to-outer radius ratios. The convergence characteristics of the DQ method have been carefully investigated for different boundary conditions, relative thicknesses, sector angles and inner-to-outer radius ratios. The numerical results show that the DQ method can yield accurate results for the title problem with a relatively small number of grid points.

REFERENCES

- 1. M. BEN-AMOZ 1959 *Journal of Applied Mechanics* **26**, 136–137. Note on deflections and flexural vibrations of clamped sectorial plates.
- 2. R. RAMAKRISHNAN and V. X. KUNUKKASSERIL 1973 Journal of Sound and Vibration 30, 127–129. Free vibration of annular sector plates.
- 3. H. YONEZAWA 1962 Proceedings of the American Society of Civil Engineers, Journal of Engineering Mechanics 88, 1–21. Moments and free vibrations in curved girder bridges.
- 4. I. E. HARIK and H. R. MOLAGHASEMI 1989 Proceedings of the American Society of Civil Engineers, Journal of Engineering Mechanics 115, 2709–2722. Analytical solution to free vibration of sector plates.
- 5. I. E. HARIK 1990 *Journal of Sound and Vibration* **138**, 542–528. Vibration of sector plates on elastic foundations.
- 6. K. RAMAIAH and K. VIJAYAKUMAR 1974 Journal of Sound and Vibration 34, 53–61. Natural frequencies of circumferentially truncated sector plates with simply supported straight edges.
- 7. M. MUKHOPADHYAY 1982 Journal of Sound and Vibration 80, 275–279. Free vibration of annular sector plates with edges possessing different degrees of rotational restraint.
- 8. T. IRIE, K. TANAKA and G. YAMADA 1988 *Journal of Sound and Vibration* **122**, 69–78. Free vibration of a cantilever annular sector plate with curved radial edges.
- 9. C. S. KIM and S. M. DICKINSON 1989 *Journal of Sound and Vibration* **134**, 407–421. On the free vibration of annular and circular, thin, sectorial plates subject to certain complicating effects.
- 10. T. IRIE G. YAMADA, and F. ITO 1979 *Journal of Sound and Vibration* 67, 89–100. Free vibration of polar orthotropic sector plates.
- 11. K. M. LIEW and K. Y. LAM 1993 International Journal of Mechanical Sciences 35, 129–139. On the use of 2-D orthogonal polynomials in the Rayleigh–Ritz method for flexural vibration of annular sector plates of arbitrary shape.
- 12. R. S. SRINIVASAN and V. THIRUVENKATACHARI 1983 *Journal of Sound and Vibration* **80**, 275–279. Free vibration of annular sector plates by an integral equation technique.
- 13. Y. K. CHEUNG and M. S. CHEUNG 1971 Proceedings of the American Society of Civil Engineers, Journal of Engineering Mechanics 97, 391-441. Flexural vibrations of rectangular and other polygonal plates.
- 14. T. MIZUSAWA 1991 *Journal of Sound and Vibration* 149, 461–470. Application of the spline element method to analyze vibration of annular sector plates.
- 15. T. MIZUSAWA 1991 Journal of Sound and Vibration 150, 245–259. Vibration of thick annular sector plates using semi-analytical methods.
- 16. A. P. BHATTACHARYA and K. K. BHOWMIC 1975 *Journal of Sound and Vibration* 41, 503–505. Free vibration of a sector plate.

- 17. H. KOBAYASHI, T. NISHIKAWA and K. SONODA 1987 Proceedings of International Symposium on Geomechanics, Bridges and Structures, Lanzhou China, 171–185. Effect of shear deformation on dynamic response of curved bridge to moving loads.
- 18. C. S. HUANG, O. G. MCGEE and A. W. LEISSA 1994 *International Journal of Solids and Structures* **31**, 1609–1631. Exact analytical solutions for free vibration of thick sectorial plates with simply supported radial edges.
- 19. K. TANAKA, G. YAMADA, Y. KOBAYASHI and S. MIURA 1990 Journal of Sound and Vibration 143, 329-341. Free vibration of a cantilever annular sector plate with curved radial edges and varying thickness.
- 20. M. N. BAPU RAO, P. GURUSWAMY and K. S. SAMPATH KUMARAN 1977 Nuclear Engineering and Design 41, 247–255. Finite element analysis of thick annular and sector plates.
- 21. P. GURUSWAMY and T. Y. YANG 1979 Journal of Sound and Vibration 62, 505–516. A sector element for dynamic analysis of thick plates.
- 22. R. S. SRINIVASAN and V. THIRUVENKATACHARI 1985 Journal of Sound and Vibration 101, 193–210. Free vibration of transverse isotropic annular sector Mindlin plates.
- 23. P. R. BENSON and E. HINTON 1976 International Journal for Numerical Methods in Engineering 10, 665–678. A thick finite strip solution for static, free vibration and stability problems.
- 24. M. S. CHEUNG and M. Y. T. CHAN 1981 Computers and Structures 14, 79-88. Static and dynamic analysis of thin and thick sectorial plates by the finite strip method.
- Y. XIANG, K. M. LIEW and S. KITIPORNCHAI 1993 Proceedings of the American Society of Civil Engineers, Journal of Engineering Mechanics 119, 1579–1599. Transverse vibration of thick annular sector plates.
- 26. R. E. BELLMAN and J. CASTI 1971 *Journal of Mathematical Analysis and Applications* 34, 235–238. Differential quadrature and long term integration.
- R. E. BELLMAN, B. G. KASHEF and J. CASTI 1972 Journal of Computational Physics 10, 40-52. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations.
- 28. J. R. QUAN and C. T. CHANG 1989 *Computers in Chemical Engineering* **13**, 779–788. New insights in solving distributed system equations by the quadrature method—I. Analysis.
- 29. C. SHU and B. E. RICHARDS 1992 Journal of Numerical Methods in Fluids 15, 791–798. Application of generalized differential quadrature to solve two-dimensional incompressible Navier–Stokes equations.
- 30. C. W. BERT, S. K. JANG and A. G. STRIZ 1988 AIAA Journal 26, 612–618. Two new approximate methods for analyzing free vibration of structural components.
- 31. C. W. BERT, S. K. JANG and A. G. STRIZ 1989 *Computational Mechanics* 5, 217–226. Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature.
- 32. A. R. KUKRETI, J. FARSA and C. W. BERT 1992 Proceedings of the American Society of Civil Engineers, Journal of Engineering Mechanics 118, 1221–1237. Fundamental frequency of tapered plates by differential quadrature.
- 33. A. G. STRIZ, S. K. JANG and C. W. BERT 1988 *Thin-Walled Structures* **69**, 51–62. Nonlinear bending analysis of thin circular plates by differential quadrature.
- 34. R. D. MINDLIN and H. DERESIEWICZ 1954 *Journal of Applied Physics* 25, 1329–1332. Thickness-shear and flexural vibrations of a circular disk.
- 35. C. W. BERT and M. MALIK 1996 *International Journal of Mechanical Sciences* **38**, 589–606. The differential quadrature method for irregular domains and application to plate vibration.
- 36. M. MALIK and C. W. BERT 1997 *Applied Mechanics in the Americas (PACAM V, San Juan Puerto Rico)* **5**, 228–231. Differential quadrature analysis for curvilinear domains via geometric mapping by blending functions.